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Abstract: Efficient and high-quality processing of seismic data collected by geophone sensors is the core of successful seismic 

exploration. Seismic denoising is a key step in seismic data processing. Traditional seismic denoising relies on manual empirical 

parameter selection and comparative analysis, which is time-consuming and limited by subjective errors. Deep learning methods 

based on convolutional neural networks (CNN) have improved the efficiency of denoising massive amounts of seismic data and 

reduced the manual errors of traditional methods. However, most CNN methods only consider data loss and are weak in 

recovering the structure of seismic signals, resulting in severe attenuation of some seismic traces in the recovered effective 

signals, reducing the continuity of seismic events and the quality of seismic data. Generative adversarial networks (GAN), a 

popular method for deep learning with unique adversarial ideas and powerful feature extraction capabilities, can overcome the 

limitations of CNN methods in the field of seismic data denoising. This paper firstly introduces the classification and 

development process of seismic denoising. Then, starting from the principle of GAN, it introduces the workflow of the original 

GAN, the objective function in the training process, the existing problems of the original GAN and some mainstream solutions to 

these problems, and introduces the commonly used model of GAN in the field of earthquake denoising. besides, it summarizes 

and analyzes the current application and improvement innovation of GAN in the field of seismic denoising, and analyzes the 

application of GAN in the field of seismic denoising from two aspects of supervised learning and unsupervised learning with 

examples. Finally, the prospect of GAN for seismic denoising in the future is prospected. 
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1. Introduction 

Oil and gas are important sources of energy, and 

products derived from them are present in all aspects of life. 

Currently the most useful in oil and gas exploration is 

seismic exploration. Seismic exploration is subdivided into 

three main parts: acquisition, processing and interpretation. 

Seismic processing is an intermediate link in seismic 

exploration. The quality of processing directly determines 

the success or failure of seismic exploration. In recent years, 

as the environment of oil and gas exploration targets has 

become more complex, the requirements for seismic data 

processing technology have also become more demanding 

[1, 2]. Seismic denoising is one of the key technologies in 

seismic data processing, and how to maximize the 

suppression of seismic data noise and enhance the 

signal-to-noise ratio of seismic data while protecting the 

amplitude and frequency band has been the focus of 

research [3, 4]. However, traditional seismic data denoising 

methods usually start from a specific perspective, and 

require artificial settings of processing parameters during 

data processing, and the processing effect relies on the 
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experience of handlers. Facing more and more vectors and 

a large amount of seismic data, there are some subjective 

factors lead to data errors [5-7]. 

With the increase in computer computing power, deep 

learning techniques have been developed. Data-driven deep 

learning techniques relies less on human involvement and 

can automatically complete data processing after model 

training, which is more suitable for the denoising 

requirements of vector and large amount of seismic data, 

bringing new opportunities for seismic data denoising [8–11]. 

Among them, the method based on convolutional neural 

networks (CNN) is the most effective in terms of noise 

suppression, achieving a new breakthrough over traditional 

methods. Zhang first proposed the use of residual 

convolution for seismic random noise suppression and 

achieved better processing results than traditional methods 

[12]; Wang and Jin verified the performance of the CNN 

denoising algorithm using synthetic data [13, 14]; Han and 

Li and Yang used residual convolution for seismic data 

denoising and proved the effectiveness of the model through 

simulated data testing and application to actual data [15-17], 

Li also verified the high dependence of the model on 

high-quality labeled data [16]. Wang proposed a CNN 

denoising method based on data enhancement to address the 

problem that CNN methods rely on high-quality labeled data, 

which can effectively remove noise and protect effective 

signals compared with traditional methods [18]. Dong and 

Zhao illustrated the limitations of traditional denoising 

methods based on the characteristics of desert seismic data 

which are severely disturbed by low frequency noise, and 

used CNN for desert seismic data denoising to verify its great 

potential in the field of desert seismic denoising [19, 20]. In 

addition to applying CNN methods for noise suppression on 

2D seismic data, researchers have proposed a 3D denoising 

convolutional neural network combined with sample 

screening based on the non-Gaussian characteristics of 3D 

seismic random noise, which has higher processing 

efficiency than traditional methods [21, 22]. 

Observations of CNN denoising studies have shown that 

two problems remain with CNN methods for denoising 

seismic data. First, most CNN methods for seismic denoising 

are based on supervised learning, which requires the 

construction of a large number of labeled pairs of data. 

Although the actual seismic data are large in volume, it is 

impossible to obtain clean data for labeling due to the 

interference of complex noise. If the denoising results of 

other methods are used as labels, the final denoising results 

may tend to be mapped by traditional methods, losing the 

meaning of noise suppression using CNN methods [23]. 

Secondly, the optimization process of CNN-based denoising 

methods usually involves minimizing the Mean Square Error 

(MSE) between the denoised data and the theoretically pure 

data, and MSE have very limited ability to measure structural 

integrity because they are defined on a per-sample basis, so 

this approach lacks a description of the data distribution and 

in particular the structural features [24]. 

In order to overcome the shortcomings and limitations of 

CNN denoising, Generative Adversarial Networks (GAN) 

began to be studied and applied. The GAN proposed by 

Goodfellow is an unsupervised learning method that learns 

data distribution indirectly [25]. Unlike traditional 

generative models that require explicit modelling of data 

distribution, it is a more efficient method that obtains high 

quality generative data through competition between 

generators and discriminators, and guides the integrity of the 

generated data structure through overall grasp of adversarial 

training. In the field of seismic data processing, Alwon has 

conducted a preliminary study on the feasibility of 

generative adversarial networks for seismic data processing 

by constructing appropriate generators and discriminators 

[26]. Picetti designed a generative adversarial network for 

seismic image processing that can convert low-quality offset 

images to high-quality images and also convert offset images 

to the corresponding reflectance images [27]. Subsequently, 

some papers on the application of GAN to seismic data 

denoising have been published. Wang and Ma combined 

attribute coding with GAN for noise suppression of desert 

seismic data, recovering effective reflections and attenuating 

noisy signals by introducing new losses, and even recovering 

weak signals heavily contaminated by seismic noise [28, 29]. 

Zheng trained a GAN model end-to-end using synthetic 

seismic data on a single-channel time-series-waveform and 

verified that the method outperformed conventional methods 

in terms of performance on real micro seismic data [30]. Li 

combined an attention module guided by Class Activation 

Maps (CAM) with GAN to better distinguish between noisy 

and active signals, resulting in denoising results with less 

false reflection signals [31]. Yu used DCGAN for random 

noise suppression of lightning wave signals. By using a 

model trained on synthetic data to denoise real data, the 

visual denoising effect and dispersion curves from seismic 

data proved that the DCGAN model can effectively denoise 

seismic data and outperform traditional denoising methods 

[32]. Liu and Li used CycleGAN for seismic data denoising 

[33, 34]. Liu compared the denoising performance of 

CycleGAN, GAN and ResNet [35] at different noise levels 

by quantitative means, and demonstrated that with the 

enhancement of noise, the model constructed by generative 

adversarial network, the denoising effect has significant 

anti-saturation ability. These studies and applications 

demonstrate the potential and advancement of GAN for 

seismic data denoising. Figure 1 shows the classification and 

development of seismic denoising methods, and researchers 

have been exploring smarter and more efficient methods for 

denoising seismic data. 

Starting from the original GAN, this paper introduces its 

basic principles, problems and derived models, and 

generally summarizes the current status of GAN 

improvements and research applications in seismic 

denoising. The principles of the different methods and the 

problems solved are analyzed with examples from both 

supervised and unsupervised learning, and the prospects for 

the development of GAN in the denoising process of 

seismic data are discussed. 
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Figure 1. Classification and Development History of Seismic Denoising Methods (Among them, the traditional denosing method references [36-41]). 

2. The Theory of GAN 

2.1. Principle of Operation 

The GAN is a network model inspired by the idea of 

zero-sum games in game theory [42], which consists of a 

generator and a discriminator, as shown in Figure 2. The 

generator is used to generate the data and the discriminator is 

used to determine whether the input data is real or generated 

by the generator. The generator is used to "deceive" the 

discriminator, and the discriminator is used to improve the 

discriminatory ability. The two are constantly optimizing 

themselves and playing against each other to achieve a 

dynamic balance. 

A usable GAN is generally trained several times iteratively, 

with the general training process being: 1) Initialize the 

generator and discriminator parameters. 2) Perform the 

following in each round of training: a) Fix the generator 

parameters, train the discriminator parameters, and input the 

real samples and generated sample data into the discriminator 

respectively, so that the real data is judged as real, and the 

data generated by the generator is judged as fake. b) Fix the 

discriminator parameters and train the generator parameters. 

A set of random noise is fed into the generator to generate 

"fake" data. The generated "fake" data is passed into the 

discriminator, which then discriminates the generated data. 

The motivation for the generator optimization is to generate 

data that more closely matches the distribution of the real 

data, so that the discriminator cannot accurately determine 

whether the input data is generated data or real data. 

 
Figure 2. Generating adversarial network’s structure and training process. 
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2.2. Objective Function 

The main goal of GAN is to minimize the distance 

between the true distribution and the generated distribution. 

The original GAN model uses Jensen-Shannon (JS 

divergence) [43] to measure the difference between the two 

distributions. According to this standard objective function 

is designed as 

~ ~
G D

min max ( , ) [log ( )] [log( ( ( )))]
r gx P z PV D G E D x E 1 D G z= + −  (1) 

where D denotes the discriminator, G denotes the generator, 

x denotes the true data, rP denotes the true data probability 

distribution, z denotes the generated data, and gP  denotes the 

generated data probability distribution. For the discriminator, 

its objective function is to maximize )G,D(V , that is, try to 

measure the distance between the generated distribution and 

the true distribution (measure the loss). For the generator, the 

goal is to minimize this distance (minimize the loss), 

ultimately allowing the generator to produce data that 

resembles the distribution of the real data. 

2.3. Problems with the Original GAN 

The original GAN was immature and suffered from many 

problems, among which gradient disappearance and training 

instability and pattern collapse severely limited the 

development of GAN. The reasons for the above problems are 

analyzed below: 

1) Gradient disappearance 

Starting with the objective function, the discriminator 

measures the optimal distance and the generator can generate 

fake data disguised as real data. The objective function of the 

generator at this point is 

( ) 2 [ || ] 2log 2r gC G JS P P= −            (2) 

It can be seen that the goal of the generator optimization is 

to reduce the JS divergence of the two distributions by 

continuous training. However, in GAN training, there is a 

high probability of no or negligible overlap between the 

generated data distribution and the real data distribution. At 

this time, no matter what the true distance between the two 

distributions is, the value of the JS divergence is always log2. 

This causes the gradient of the generator to disappear and 

prevents further optimization of the generator through 

training. 

2) Training Instability and Pattern Collapse Severely 

The essence of pattern collapse is that the generator no 

longer seeks diversity in order to avoid greater penalties by 

producing large amounts of similar data. From (1) and (2) and 

divergence [44], the deformed generator objective function is 

( || ) 2 ( || )G g r r gL KL P P JS P P= −         (3) 

[ || ]g rKL P P  expands according to the KL divergence 

definition as 

)x(P

)x(P
log)x(P=]P||P[KL

r

g

grg            (4) 

From formula (3) (4), we can see two problems in GAN 

training: a) The essence of training generators is 

minimization GL . From (1)-(3) it can be seen that 

minimization means both minimizing the divergence of KL 

between the generated data and the real data and maximizing 

the divergence of JS between the two distributions. This 

leads to gradient oscillations, causing the GAN training to 

become unstable. b) Formula (4) punishes different errors 

differently. From equations (4), it can be seen that when gP

tends to 0 and rP tends to 1, the KL divergence is close to 0 and 

the generator obtains a small gradient penalty; when gP tends to 

1 and rP tends to 0, the KL divergence tends to infinity and the 

generator obtains a huge gradient penalty. Among them, the 

first error indicates the lack of diversity of the generator, and 

the second indicates the lack of accuracy of the generator. 

Since the second penalty is much larger than the first, the 

generator is more willing to generate some duplicate data, 

resulting in the phenomenon of mode collapse. 

2.4. Improvements to the GAN 

An analysis of the original GAN problem shows that the 

cause of a number of problems is that its objective function uses 

JS divergence to measure the distance between the generated 

distribution and the true distribution, and in order to solve the 

problems posed by the original GAN, the researchers have 

chosen to put aside the JS divergence to seek a breakthrough. 

2.4.1. WGAN and WGAN-GP 

In response to the problems of the original GAN, 

ARJOVSKY proposed Wasserstein GAN (WGAN) [45]. It 

uses the EM distance to measure the distance between two 

distributions, and the resulting objective function of the 

WGAN is derived as 

~ ~( , ) max { [ ( )] [ ( )]}
data gD 1 Lipschitz x P x pV G D E D x E D x−= −∈  (5) 

The advantage of EM distance is that the distance between 

two distributions can still be measured even if there is no 

overlap between them or if the overlap is negligible. This 

avoids problems such as gradient disappearance, training 

instability and pattern crashes. However, in practical 

experiments WGAN often suffers from difficulties in training 

and slow convergence. This is due to the fact that the 

parameters are directly trimmed to the range [-c, c] using 

weight trimming in order to satisfy the Lipschitz  restriction, 

forcing the discriminator's objective function to be smooth. 

At this point in the optimal strategy, the parameters tend to 

go to extremes, either taking maximum or minimum values, 

and the fit of the model becomes poor, while the parameter c 

is difficult to determine and can cause the gradient to 

disappear or explode if it is not chosen properly. 
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Gulrajani proposed an improved version of WGAN, 

WGAN-GP [46], which uses a gradient penalty to satisfy the

Lipschitz continuity condition. This is done by adding a 

gradient penalty (extra loss) to the discriminator objective 

function, linking the parameters to the constraints to achieve 

the Lipschitz restriction. The optimized objective function is 

~ ~ ~( , ) max { [ ( )] [ ( )] [max(0,|| ( ) || 1)]}
data gD x P x p x penalty xV G D E D x E D x E D xλ− − −≈ ∇              (6) 

The penalty term in this objective function is used to 

penalize behavior greater than 1 on gradient update, thus 

solving the problem of parameter centralization and the 

difficulty of determining the extent of cropping due to weight 

cropping in WGAN. 

In addition to improving GAN from the objective function, 

researchers have also combined GAN with other ideas to 

improve GAN models, allowing the adversarial learning ideas 

of GAN to permeate applications in a wider range of fields. 

2.4.2. DCGAN 

Convolutional neural networks (CNN) have shown great 

advantages in feature extraction making them widely used in 

the field of supervised learning, but their application in 

unsupervised learning has been less than satisfactory. Both 

the generator (G) and discriminator (D) of the original GAN 

use fully connected neural networks, which gives it limited 

ability to extract features. The convolutional generative 

adversarial network (DCGAN) proposed by Radford [47] 

combines a deep convolutional neural network (DNCNN) 

[48] with a GAN, replacing the network structure of both 

the generator and discriminator of the GAN with a deep 

convolutional neural network, using the powerful feature 

extraction capability of the DNCNN to enhance the 

generative capability of the generator and the 

discriminatory capability of the discriminator. In addition to 

using CNN as the main structure of the generator and 

discriminator, DCGAN also uses a series of training 

techniques, such as using Batch Normalization (BN) 

technique to solve the problem of deeper training of the 

network structure; eliminating pooling and using filters with 

step size to complete the convolution operation, effectively 

retaining the feature information; using ReLu activation 

function for all layers except the last layer of the generator, 

which uses Tanh activation function to reduce the risk of 

gradient disappearance; using Leaky ReLu as the activation 

function for all layers of the discriminator. DCGAN is 

suitable for most image generation scenarios. 

2.4.3. CGAN 

The generator input to the original GAN is a random noise 

vector, which cannot be controlled to generate the specified 

data. Mirza proposed Conditional Generative Adversarial 

Networks (CGAN)[49], which adds extra information c to 

both the generator and discriminator, turning unsupervised 

GAN into supervised learning, an improvement that enables 

the network to generate data in a prescribed direction. GAN 

applies to the scenario for which the object is specified to be 

generated. 

2.4.4. CycleGAN 

The CGAN mentioned above is adding extra information, and 

its extra information is the label information, which is equivalent 

to the fact that CGAN training must have labeled pairs of data, 

which limits its application scenarios. In order to address this 

problem and enable the transformation between different 

domains, researchers have proposed a cyclic consistent 

generative adversarial network (CycleGAN) [50], trained using 

unpaired data, in conjunction with pairwise learning [51]. The 

core idea of CycleGAN is cyclic consistency. The data in the 

x-domain is transformed to the y-domain by generator G1, 

which can then be transformed to the data in the x-domain by 

generator G2 (as in the CycleGAN model structure in Table 1). 

CycleGAN is suitable for scenarios where styles are shifted and 

data are not paired. Table 1 lists a comparison of the features of 

each derived model. 

Table 1. Comparison table of derived models of GAN. 

Name Model structure Advantages Disadvantages Application Scenarios 

DCGAN 

 

Generate rich 

images 

Poor quality of 
generated images 

and unstable models 

Most image 

generation tasks 

CGAN 

 

Generate 

specified data 
based on the 

given 

information 

Need labelled 

dataset, transformed 
to supervised 

learning, 

unbalanced 
training, poor 

quality of generated 

data 

Scenarios with 
additional given 

information 
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Name Model structure Advantages Disadvantages Application Scenarios 

CycleGAN 

 

Low data 

requirements, no 

need for pairs of 
images, just 

images of 

different 
domains 

Generate images 

with low resolution 

Most domain 
transformation 

scenarios 

 

3. Application of GAN in Seismic Data 

Denoising Processing 

As GAN has made breakthroughs in other fields, 

researchers have thought of introducing GAN to the field of 

seismic denoising. To get a clearer picture of the current 

research status of GAN in the field of seismic denoising, Table 

2 shows the applications of GAN in the field of seismic 

denoising in recent years. As can be seen from Table 2, there 

are three main directions of innovation in applying GAN to the 

field of seismic data denoising: first, application field 

innovation, applying GAN methods to uncovered seismic data, 

verifying the feasibility of GAN denoising methods and 

comparing them with traditional denoising methods; second, 

improving the structure of the original GAN model by 

replacing the fully connected network structure of the original 

GAN model with a network structure that is more capable of 

extracting features, making the model more capable of 

denoising; third, improving the loss function by introducing 

other ideas to improve the denoising capability while 

enhancing the protection of the effective signal. 

Table 2. Comparison of GAN in seismic denoising. 

Methods Innovations Learning styles Comparison methods Evaluation indicators 

GAN [30] 
Innovation in application: GAN for micro seismic 

data denoising 

Supervised 

learning 
EEMD, DWT 

Single-channel time-sequence 

waveform plot 

DCGAN [32] 
Innovation in application: GAN for random noise 

removal from Ray Ripple signals 

Supervised 

learning 

F-X deconvolution, 

wavelet transform 

Seismic data maps, 

dispersion curves 

CGAN [52] 

[53, 54] 

Innovation in application: for ground roll noise 

removal 

[53] Structural improvements: generators use 

U-Net structures 

Supervised 

learning 

S transform, AGRA, and 

f-k filtering 

Seismic data maps, 

amplitude spectra, 

SNR spectra, PSNR, SSIM 

DNGAN [24] 

CADN [55] 
Loss function improvement: introducing data loss 

Supervised 

learning 

band-pass filter, RED-Net, 

original GAN, DNGAN, 

EMD, RPCA 

Seismic data maps, 

SNR, MSE 

CycleGAN 

[33, 34, 56] 

[56] Loss function improvement: introducing 

signal estimation to obtain training data 

[33, 34] Structural improvement: residual-based 

learning 

Supervised 

learning 

LTF, RNR 

FXDM, DNCNN 

Original GAN, ResNet 

Seismic data maps, spectral 

curves, PSNR, MSE 

CycleGAN 

[57, 58] 

Structural improvements: generators use deep 

residual networks 

Unsupervised 

learning 

Band-pass filter, wavelet 

threshold method, damping 

reduction rank method 

Seismic data maps, SNR, MSE 

(RMSE), amplitude spectra 

Att-DCDN [28] 

RAGAN [29] 

Loss function improvement: introducing attribute 

information 

Unsupervised 

learning 
VMD, DNCNN 

Seismic data maps, SNR, 

MSE, amplitude spectra, 

power spectra 

U-GAT-IT [30] 
Loss function improvement: introducing an 

attention mechanism 

Unsupervised 

learning 

Wavelet transform, F-X 

deconvolution, DNCNN 

Seismic data maps, 

SNR, MSE 

 

When performing denoising tasks using deep learning 

methods, CNN methods are widely used in seismic denoising 

because they can map the data to a non-linear space and can 

automatically perform the extraction of potential features, 

achieving better results than traditional methods [59]. 

However, the CNN method still suffers from weak ability to 

restore the structural integrity of the signal and strong 

reliance on labelled data. Generative adversarial networks 

are highly effective in guiding data to recover structural 

integrity due to their unique adversarial properties. 

Currently, deep learning algorithms can be divided into two 

categories, supervised learning and unsupervised learning, 

depending on whether the dataset is labeled or not [60]. In 

particular, supervised learning requires the construction of a 

training set based on pairs of data containing labels, which 

is demanding on the dataset; unsupervised learning can 

solve the problem of the training model relying on the 

labels of the training set and reduce the requirements of the 

dataset. In the following, the application of GAN in seismic 

denoising is analyzed with examples from both supervised 

and unsupervised learning. 
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3.1. GAN Denoising Based on Supervised Learning 

The initial function of a GAN is to generate a large amount 

of data with probability distributions close to the probability 

distribution of real data, an unsupervised learning process 

[61-64]. In seismic denoising, Dong and Wang replaced the 

generator in the GAN with a denoiser having a CNN 

structure, using the constructed paired dataset and guiding 

the CNN denoising network through a discriminator to 

optimize the parameters [24, 55]. As shown in Figure 3 is the 

flowchart of its implementation of seismic data denoising 

using GAN, which mainly includes two parts: denoiser and 

discriminator. The denoising process is as follows: the 

synthetic seismic data (a superposition of theoretically pure 

seismic data and actual noise) is fed into the denoiser, which 

denoises the data by constructing a loss between the 

theoretically pure seismic data and the output data of the 

denoiser and continuously minimizing this loss to optimize 

the denoising result, thus obtaining denoised data. The 

discriminator improves the ability to discriminate between 

denoising data and pure data, and the denoiser improves its 

denoising ability to generate purer data to "deceive" the 

discriminator. The final discriminator guides the denoiser to 

generate denoising results with better continuity of seismic 

events. 

 
Figure 3. Denoising Flowchart. 

 
Figure 4. Denoiser construction. 

The denoiser constructed in Figure 3 is a convolutional 

neural network based on RED-Net [65], whose structure is 

shown in Figure 4, with Conv denoting the convolutional layer, 

whose basic function is to extract potential features of the 

input data and obtain a feature map. Deconv denotes 

deconvolution, which is the inverse process of convolution. 

Deconvolution allows the synthesis of low-dimensional data 

based on the reconstruction of high-dimensional features 

extracted by convolution [66]. ReLu is a commonly used 

nonlinear activation function that can increase the speed of 

gradient descent and reduce operating costs [67]. The basic 

functions of ReLu are 

( ) max( , )f r 0 r=                 (7) 
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Where r denotes the input to the ReLu activation function 

and Addition denotes the feature map obtained by convolution 

and the feature map obtained by inverse fold convolution, 

using a skip connection, to achieve feature map fusion. 

Feature map fusion can lead to additional performance gains 

for denoising models. Firstly, the back propagation of the 

gradient to the bottom layer is achieved, which solves the 

problem of gradient disappearance, accelerates the 

convergence of the network and reduces the difficulty of 

network training [68]. Secondly, as the depth of the 

convolution layer increases, low-dimensional features of the 

signal are transformed into high-dimensional features 

resulting in loss of detail information. The skip connection 

allows the signal to be passed directly from the convolutional 

layer to the deconvolutional layer for feature map fusion, 

facilitating the recovery of the original signal and improving 

the signal-to-noise ratio. 

Normally noisy data is defined as 

y e n= +                       (8) 

where y represents noisy data, e represents theoretically pure 

data (labels), and n  represents noise. The end-to-end mapping 

relationship from noisy data to pure data established by the 

denoiser is 

~

( ; )e G y θ=                    (9) 

where 
~

e  denotes the denoised data, G denotes the mapping 

relationship established by the denoiser and θ  denotes the 

network parameters. In order to optimize the mapping 

relationship and continuously reduce the gap between the 

pure and denoised data, it is necessary to construct a loss 

function. The optimal mapping is obtained by minimizing the 

losses to obtain denoised data with high signal-to-noise ratio. 

The MSE is used in the paper as a reconstruction loss 

function to optimize the denoising process. It is calculated as 

2

1

1
|| ( ; ) ||

2

M

MSE i i F

i

L G y e
M

θ
=

= −∑       (10) 

where M denotes M pairs of data, F||•|| denotes the F norm 

and i denotes the i-th pair of data. It can be seen by (10) 

that MSE tends to generate smooth predicted signals and 

lacks high precision textures, resulting in its limited ability 

to characterize the structure of the signal. This requires the 

discriminator to be involved in forming a confrontation 

with the denoiser, mitigating this problem through 

confrontation. 

 
Figure 5. Discriminator structure. 

Figure 5 shows the detailed structure of the discriminator in 

Figure 3. It is composed of multiple convolutional layers, and 

the discriminator, unlike the denoiser, is used to compress the 

classification, so the use of LeakyReLu as the activation 

function is more conducive to reducing information loss. The 

discriminator continuously extracts the data features of denoise 

data and theoretically pure data through multiple convolutional 

layers, discriminates the data classes, constrains the denoiser to 

maintain a good signal structure, and finally obtains a denoised 

signal with a complete structure and high signal-to-noise ratio. 

This adversarial process can be achieved by optimizing the 

adversarial loss, which is defined as 

~

~

ad ~
~

, [log ( )] {log[1 ( )]}
data

d

e p
e p

L D G E D e E D e= + −( )   (11) 

Where ( , )adL D G denotes the adversarial loss, E is the 

mathematical expectation, e  denotes the theoretically pure 

data, 
datap denotes the theoretically pure data probability 

distribution, 
~

e denotes the denoised data, dp denotes the 

probability distribution of the denoised data and D is the 

mapping relationship established by the discriminator. From 

equations (10) and (11), it can be seen that in order to obtain 

better denoising performance, the denoiser tries to minimize 

the MSE and the discriminator needs to improve its 

discriminatory power. At this point it is necessary to 

maximize ,adL D G( ), so the adversarial objective function 

of the denoiser and discriminator is defined as 

)G,D(Lmaxminarg=D,G ad
DG

**
         (12) 

Where min
G

denotes minimizing the denoiser loss, max
D

denotes maximizing the adversarial loss, and arg denotes the 

value of the variables in D and G when the denoiser loss is 

minimized and the adversarial loss is maximized. Based on the 

optimization objective, a new loss function is constructed as 
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)G,D(Lη+L=L adMSE               (13) 

Where η is a balancing factor to balance the proportion of

MSE and counteracting losses. The value of this 

hyper-parameterη is determined by assigning different values 

to η and training the network model several times. 

  
                                (a)                                                           (b) 

  
                                (c)                                                           (d) 

 
(e) 

Figure 6. Analysis of denoising results of forward synthesis data. (a) Theoretical desert seismic data;(b) Synthetic noisy seismic data; (c) Denoising result of 

RED-Net; (d) Denoising result of original GAN; (e) Denoising result of DnGAN. (Resource: [24]). 
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                              (a)                                                             (b) 

  
                              (c)                                                              (d) 

Figure 7. Analysis of the denoising results of really noisy seismic data. (a) Field data in the desert region; (b) Denoising results of the field data by RED-Net; (c) 

Denoising results of the field data by original GAN; (d) Denoising results of the field data by DnGAN. (Resource: [24]). 

Figure 6 shows the results of denoising tests on different 

deep learning models using seismic model forward data. 

Among them, (a)-(e) denote theoretically pure data, synthetic 

noise-bearing data, RED-Net denoising results, original GAN 

denoising results, and DnGAN (the model in Figure 3 is 

named DnGAN in [24]) denoising results, respectively. From 

(c) in Figure 6, it can be seen that some spurious seismic 

events (green boxes) appear in the denoising results of 

RED-Net (a denoising model using only CNN structure), 

which is caused by using only MSE as loss. In addition to 

this, a comparison of (a) and (e) in Figure 6 reveals that in 

the case of (a), in addition to the presence of spurious seismic 

events, the continuity of seismic events is not as good as in (c) 

(red box). As can be seen from (d) and (c) in Figure 6, the 

denoising results using DnGAN [24] have better seismic 

event continuity, and the original GAN, although showing 

weak event repair, is not as effective as DnGAN (red box). 

This would suggest that a model structure combining data 
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loss and adversarial loss is more effective in restoring 

seismic event continuity and suppressing spurious seismic 

events. This advantage has also been demonstrated in the 

processing of actual seismic data. Figure 7 shows the results 

of each model for real seismic data. (a)-(d) in Figure 7 

represent the real noisy seismic data, RED-Net denoising 

result, original GAN denoising result, and DnGAN denoising 

result, respectively. In this case, it can be seen from (a) in 

Figure 7 that in addition to low frequency desert seismic 

noise (red boxes), there is also strong surface wave 

interference (green and yellow boxes) in the real 

noise-bearing seismic data. However, as can be seen from 

(b)-(d) in Figure 7, the deep learning denoising method not 

only suppresses the desert noise at low frequencies, but also 

does a good job of suppressing the surface waves. And as can 

be seen from the enlarged portion (yellow box) labelled in 

(b)-(d) in Figure 7, DnGAN outperforms RED-Net and the 

original GAN in terms of event repair. 

  

                               (a)                                                             (b) 

  
                               (c)                                                             (d) 

Figure 8. Analysis of denoising results of forward synthesis data. (a) Theoretical seismic data; (b) Synthetic noisy data; (c) Denoising results of DNCNN; (d) 

Denoising results of RCGAN. (Resource: [34]). 

   
                      (a)                                      (b)                                       (c) 

Figure 9. A partial zoom of the denoising results of the real seismic data. (a) Field data; (b) Denoising results of the field data by DNCNN; (c) Denoising results 

of the field data by RCGAN. (Resource: [34]). 
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In besides, Li applied CycleGAN (the denoising process of 

CycleGAN will be described in detail later) to seismic data 

denoising, naming the CycleGAN with the addition of 

residual networks as RCGAN [34], and trained the RCGAN 

model using the constructed paired dataset, which also reflects 

the role of adversarial in restoring continuity of seismic events. 

Figure 8 shows the results of denoising the synthetic seismic 

data using this model. Where (c) is the denoising result using 

DNCNN and (d) is the denoising result using RCGAN. The 

part indicated in the red arrow shows that although the 

DNCNN can also suppress the noise signal better, the poor 

continuity caused by a slight gap in the reflected seismic 

events. As shown in the red dashed box in Figure 9 for the real 

data, the DNCNN results in poor continuity of seismic events, 

while the RCGAN results not only provide effective 

suppression of seismic noise, but also recover better 

continuity of seismic events than the DNCNN. 

3.2. GAN Denoising Based on Unsupervised Learning 

When a GAN based on supervised learning is used for seismic 

data denoising, the training model must rely on pairs of seismic 

data. However, actual seismic data is difficult to find matching 

clean data to use as a target for model learning. CycleGAN, a 

variant of GAN, was originally designed to achieve mapping of 

images from source to target domains without using additional 

input information, rather than a one-to-one mapping relationship 

between specific data in two domains. In order to reduce the 

requirement for training samples and improve the generalization 

ability of the model, Li and Wu used unpaired data to train the 

CycleGAN model to achieve the mapping from noise-containing 

domain seismic data to noise-free domain seismic data for the 

purpose of denoising [57, 58]. 

The CycleGAN model used to implement the denoising of 

seismic data consists of two mirror-symmetric GANs.  

 
Figure 10. Denoising model based on CycleGAN. 

Figure 10 shows a seismic denoising model based on the 

CycleGAN structure, which contains two generators and two 

discriminators. The process of GAN1 is to map the y-domain 

(noise-containing domain seismic data) data to the x-domain 

(clean domain seismic data) by means of the generator yxG , 

which optimizes the mapping relationship after confrontation 

with the discriminator xD . The GAN2 process is the same, 

taking the data in the x-domain, mapping it to the y-domain 

after the generator xyG , and using the discriminator yD to 

guide the generation of data that approximates the target 

domain. In this cyclic adversarial training process, the final 

generator that achieves the mapping of the data from the 

y-domain to the x-domain is the desired denoiser. In order to 

optimize the training process and get better domain mapping 

results, the loss function is constrained by fighting against the 

loss, which is defined as 

1 ~ ( )~( , , , ) [log ( )] {log[1 ( ( ))]}
datadataGAN yx x x y P y x yxx P xloss G D y x E D x E D G y= + −( )                (14) 

2 ~ ( )~( , , , ) [log ( )] {log[1 ( ( ))]}
datadataGAN xy y y x P x y xyy P yloss G D x y E D y E D G x= + −( )                (15) 

Where )x(Pdata  denotes the clean domain data probability 

distribution, )y(Pdata  denotes the noisy domain data 

probability distribution, y  denotes noisy data, x  denotes 

theoretically pure data, xyG  denotes the generator that 

implements the mapping from clean domain seismic data to 

noisy domain seismic data, yxG  denotes the generator that 

implements the mapping from noisy domain seismic data to 

clean domain seismic data, xD denotes the clean data 

discriminator, and yD  denotes the noisy data discriminator. 

When training GAN1 and GAN2 using adversarial loss, 

CycleGAN proposes the use of cyclic consistent loss to constrain 

this conversion process in order to diversify the data and to avoid 

the generator converting all the data in the domain to the same 

data in another domain. This constraint process is shown in 

Figure 11: after the y-domain data is mapped to the x-domain 

( )y(Gyx via the generator yxG , this data can be mapped back to 

the y-domain (y-) via xyG (similarly, the x-domain data can be 

mapped back to the x-domain (x-) via yxG after being mapped to 

the y-domain ( )x(Gxy ) via the generator xyG ) [69]. The 

constraint is to make the target domain data generated by the 

generator as close as possible to the input data by continuously 

reducing the cyclic consistency loss, thus maximizing the 

retention of information about the seismic event. At this point the 

cyclic consistency loss (reconstruction loss) is defined as 

~ ( ) 1 ~ ( ) 1( , ) {|| ( ( )) || } {|| ( ( )) || }
data datacycle yx xy x P x yx xy y P y xy yxloss G G E G G x x E G G y y= − + −             (16) 
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where 1||•|| denotes the 1L paradigm. Cyclic consistency loss keeps consistency between inputs x and y and outputs 'x and
'y , 

guiding the generator to learn purposefully and preventing degradation of the network model [70]. 

The final loss function is made up of three components 

1 2( , , , ) ( , , , ) ( , , , ) ( , )yx xy x y GAN yx y GAN xy x yx xyloss G G D D loss G D y x loss G D x y loss G Gλ= + +          (17) 

where λ is a control factor to control the share of adversarial and cyclic consistent losses in the final loss. Therefore the final 

objective function is 

1 2
, ,

min max ( , , , ) ( , , , ) ( , , , ) ( , )
yx xy x y

yx xy x y GAN yx y GAN xy x yx xy
G G D D

loss G G D D loss G D y x loss G D x y loss G Gλ= + +       (18) 

Model training is guided by an optimized objective function, 

resulting in a generator for seismic data denoising, which is 

represented as 

)y(G=x yx
'                   (19) 

In the same way as GAN denoising with supervised 

learning, both the generator and discriminator of CycleGAN 

use CNNs to extract data features. In this case, a 

skip-connected structure is also used in the generator to avoid 

network degradation as the number of layers increases, which 

is used to retain the original data information; the 

discriminator uses a full convolutional network to 

continuously extract features and obtain judgement results to 

guide the generator training. 

 
Figure 11. Cycle Consistent Loss Process. 

Wu used unpaired data to train the CycleGAN model and 

verified the effectiveness of the CycleGAN model by 

conducting denoising experiments on synthetic and real 

seismic data. Figure 12 shows the results of different 

methods for denoising synthetic seismic data [58]. (a)-(d) 

in Figure 12 represent theoretically pure data, synthetic 

noisy data, denoising results using wavelet thresholding, 

and denoising results using CycleGAN, respectively. As 

can be seen from (c) and (d) of Figure 12, in the part of (b) 

that is more severely affected by random noise (red arrow), 

the situation is improved after denoising by both methods, 

but CycleGAN has better results. (e) in Figure 12 shows the 

results of the spectral analysis of the 240th channel of data 

extracted from the red box in (c) and (d). From (e), it can be 

seen that in the range of 90Hz to 180Hz, the CycleGAN 

denoising method almost completely removes the random 

noise. The effectiveness of CycleGAN trained using 

unpaired data was similarly validated on real seismic data. 

(a)-(c) in Figure 13 represent the real noisy data, wavelet 

threshold denoising result, and CycleGAN denoising result, 

respectively. As can be seen from the red boxes in (b) and (c) 

in Figure 13, the CycleGAN model trained using unpaired 

data not only outperforms conventional methods in terms of 

noise suppression, but also in terms of its ability to restore 

signal continuity. 

In addition to enabling the denoising of seismic data in the 

unsupervised learning case through domain mapping, the 

researchers also introduced attribute information into the 

GAN model to achieve noise suppression of seismic data in 

the unsupervised learning case through attribute annotation, 

reducing the requirements on the dataset. Wang and Ma 

achieved suppression of seismic noise by using attribute 
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annotation on the data and constructing new loss constraints in 

the GAN model. Their experimental results show that using an 

attribute-based unsupervised learning GAN can achieve better 

results than traditional methods [28, 29]. 

 

                                     (a)                                                (b) 

 

                                      (c)                                               (d) 

 

(e) 

Figure 12. Analysis of synthetic data denoising results. (a) Theoretical seismic data; (b) Synthetic noisy seismic data; (c) Denoising result of Wavelet Threshold; 

(d) Denoising result of CycleGAN; (e) comparison of spectrum before and after denoising of trace 240 of complex model seismic profile. (Resource: [58]). 

   

                      (a)                                      (b)                                       (c) 

Figure 13. Real seismic data denoising results. (a) Post-stack seismic profile;(b) Denoising result of Wavelet Threshold;(c) Denoising result of CycleGAN. 

(Resource: [58]). 
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4. Conclusion 

4.1. Summary 

Traditional domain change filtering based seismic signal 

denoising techniques have yielded better results in 

suppressing conventional rules noise interference. However, 

more intelligent signal denoising techniques are needed to 

better protect the broadband data of seismic signals and reduce 

subjective human errors. This paper presents a detailed 

introduction to the theory of generative adversarial networks 

and their derived models, discusses the application of GAN in 

the field of seismic denoising with examples, analyses the 

feasibility and effectiveness of GAN for seismic denoising in 

terms of both supervised and unsupervised learning, and 

achieves the following understanding: 

1) Most of the commonly used deep learning models for 

denoising tasks are CNN models based on supervised 

learning, which use a single data loss to construct a loss 

function between denoised data and pure labeled data, 

and reduce this loss through continuous optimization to 

achieve the purpose of denoising. This CNN model, 

which relies only on data loss, is not friendly to 

recovering seismic event continuity when used for 

seismic data denoising. Generating an adversarial 

network is able to guide the recovery of seismic events as 

a whole due to its adversarial nature. A model combining 

CNN and GAN not only inherits the denoising 

advantages of CNN but also the unique adversarial 

nature of GAN makes the denoising results with high 

signal to noise ratio and good event continuity. 

2) Supervised learning-based GAN models have made some 

breakthroughs in restoring continuity of seismic events, 

but supervised learning relies on constructed paired 

datasets, which also limits its application scenarios. The 

unsupervised learning GAN model breaks through the 

limitation that model training must rely on paired data and 

opens up new ideas for seismic data denoising research. 

CycleGAN, a typical unsupervised learning model, has 

the core idea of mapping two different domains of data 

instead of one-to-one correspondence of data, reducing 

the requirement for data sets. In addition, the researchers 

also introduced attribute information into GAN training, 

reducing the requirement for paired data by setting 

attribute information to the data. 

4.2. Prospect 

As the seismic data acquisition environment and seismic 

data processing interpretation changes, there is an increasing 

demand for deep reflection seismic data, marine 

multicomponent seismic data, shallow desert strong 

attenuation seismic data and other complex tectonic weak 

signal seismic data processing. How to better suppress 

complex noise, protect the effective signal amplitude and 

signal band, and obtain high resolution data for seismic 

interpretation is an urgent need in the field of seismic data 

processing now and in the future. The evolving GAN 

technology applied to the field of seismic data denoising can 

improve the denoising quality in the following ways: 

1) In terms of dataset construction, for data-driven deep 

learning techniques, it is extremely important to build 

complete datasets, and the quality of the training set 

directly affects the model training effect, which can be 

improved by introducing advanced exploration data 

modelling techniques. The current method of extending 

the seismic data for small samples is mostly scale 

transformation, increasing the training samples through 

scaling, inversion, deflection, etc. The generative 

adversarial network is originally a method for generating 

new data by mining the potential features of the data, so 

it can be considered to build a training dataset by 

generating data from the generative adversarial network 

to verify its feasibility; 

2) In terms of algorithms, model performance and feature 

extraction can be improved by introducing cutting-edge 

techniques such as hyperparameter optimization, 

multi-scale feature extraction and migration learning into 

the GAN. In addition, advanced techniques in the field of 

image denoising can also be combined, and advanced 

methods for natural image denoising can be combined 

with GAN to design algorithms suitable for seismic 

profile processing; 

3) In terms of model training, as the original GAN model 

suffers from gradient disappearance, training instability 

and pattern collapse, a stable GAN model suitable for 

denoising seismic data can be constructed by combining 

GAN optimization methods to stabilize the training of 

the GAN. 
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