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Abstract: Suppose that A is a real or complex unital Banach ∗-algebra, M is a unital Banach A-bimodule, and G ∈ A is
a left separating point of M. In this paper, we investigate whether the additive mapping δ : A → M satisfies the condition
A,B ∈ A, AB = G⇒ Aδ(B)+ δ(A)B∗ = δ(G) characterize Jordan ∗-derivations. Initially, we prove that ifA is a real unital
C∗-algebra and G = I is the unit element in A, then δ (non-necessarily continuous) is a Jordan ∗-derivation. In addition, we
prove that if A is a real unital C∗-algebra and δ is continuous, then δ is a Jordan ∗-derivation. Finally, we show that if A is a
complex factor von Neumann algebra and δ is linear, then δ (non-necessarily continuous) is equal to zero.
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1. Introduction
Let R be an associative ring. By an involution on R, we

mean a mapping ∗ from R into itself, such that (AB)∗ =
B∗A∗ and (A∗)∗ = A for each A,B in R. A ring equipped
with an involution is called a ∗-ring. In [1], M. Brešar and J.
Vukman give the concept of Jordan ∗-derivations. An additive
mapping δ fromR into itself is called a Jordan ∗-derivation if

δ(A2) = δ(A)A∗ +Aδ(A) (1)

for everyA inR. IfA is a ∗-algebra andM is anA-bimodule,
then it is clear that an additive mapping δ from A intoM is a
Jordan ∗-derivation if and only if

δ(AB) = δ(A)B∗ +Aδ(B) + δ(B)A∗ +Bδ(A) (2)

for each A,B in A.
The study of Jordan ∗-derivations has been motivated

by the problem of the representability of quasi-quadratic
functionals by sesquilinear ones. It turns out that the question
of whether each quasi-quadratic functional is generated by
some sesquilinear functional is intimately connected with the
structure of Jordan ∗-derivations. For the results concerning
this problem we refer to [5, 6, 12-15]

In [1], the authors study some algebraic properties of Jordan

∗-derivations. As a special case of [1, Theorem 1], we know
that every Jordan ∗-derivation δ from a complex unital ∗-
algebra A into itself is of the form δ(A) = TA∗ − AT for
some T in A. For non-unital ∗-algebras, in [2], M. Brešar and
B. Zalar prove that every Jordan ∗-derivation δ from an algebra
of all compact linear operators on a complex Hilbert space H
into itself is of the form δ(A) = TA∗ − AT for some T in
B(H). But it is also an open question whether above result in
[2] remains true in the real case.

Roughly speaking, it is much more difficult to study Jordan
∗-derivations on real algebras than on complex algebras.

Nevertheless, in [10], P. Šemrl proves that every Jordan ∗-
derivation on B(H) is of the form δ(A) = TA∗ − AT for
some T in B(H), where H is a real Hilbert space H with
dimH > 1, and in [2], the authors give a new proof of this
result. In [11], P. Šemrl shows that every Jordan ∗-derivation
from a standard operator algebra A on H into B(H) is of the
form δ(A) = TA∗ − AT for some T in B(H), where H is
a real or complex Hilbert space H with dimH > 1. In [9],
X. Zhao and X. Qi prove that, under some mild conditions, an
additive mapping δ from a ∗-ring with a symmetric idempotent
P into itself satisfies the condition

AB = P ⇒ δ(AB) = δ(A)B∗ +Aδ(B)

+δ(B)A∗ +Bδ(A) (3)
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if and only if δ is an additive Jordan ∗-derivation.

2. The Main Results

It is not hard to see that when A is a complex unital
Banach ∗-algebra, every linear Jordan ∗-derivation fromA into
a Banach A-bimodule is zero. So, the notion of Jordan ∗-
derivation studied in this note is more appropriate in the setting
of real Banach ∗-algebras, and specially for real operator
algebras and real C∗-algebras as illustrated by results in
[10, 11].

Theorem 2.1. Suppose thatA is a real unitalC∗-algebra and
M is a unital BanachA-bimodule. If δ is an additive mapping

(non-necessarily continuous) from A intoM that satisfies the
condition

AB = I ⇒ Aδ(B) + δ(A)B∗ = δ(I), (4)

then δ is a Jordan ∗-derivation.

proof. It is easy to show that δ(I) = 0. Let A be an
invertible element in A. By AA−1 = I , we can obtain that

Aδ(A−1) + δ(A)(A∗)−1 = 0. (5)

For any T inA, let n be a positive integer with n > ‖T‖+1
and B = nI + T . We have that B and I − B are invertible in
A. Thus we know that

δ(B) =−Bδ(B−1)B∗ = −Bδ(B−1(I −B)2 −B)B∗

=−Bδ(B−1(I −B)2)B∗ +Bδ(B)B∗

=(I −B)2δ((I −B)−2B)(I −B∗)2 +Bδ(B)B∗

=(I −B)2δ((I −B)−2 − (I −B)−1)(I −B∗)2 +Bδ(B)B∗

=(I −B)2δ((I −B)−2)(I −B∗)2 − (I −B)2δ((I −B)−1)(I −B∗)2 +Bδ(B)B∗

=− δ((I −B)2) + (I −B)δ(I −B)(I −B∗) +Bδ(B)B∗

=− δ(B2) +Bδ(B) + δ(B)B∗ + δ(B). (6)

It implies that δ(B2) = Bδ(B)+ δ(B)B∗, by δ(I) = 0, we
have that

δ(T 2) = Tδ(T ) + δ(T )T ∗ (7)

for every T in A. it follows that δ is a Jordan ∗-derivation.
Recall the definition of the left separating point. For an

algebra A and an A-bimodule M, G in A is called a left
separating point ofM if GM = 0 implies M = 0 for every
M inM.

Theorem 2.2. Suppose thatA is a real unitalC∗-algebra,M
is a unital Banach A-bimodule and G is a left separating point
ofM. If δ is a continuous linear mapping fromA intoM that
satisfies the condition

AB = G⇒ Aδ(B) + δ(A)B∗ = δ(G), (8)

then δ is a Jordan ∗-derivation.

Proof. SinceGI = G, it follows thatGδ(I)+δ(G) = δ(G).
By the definition of the left separating point, we know that
δ(I) = 0.

Let A be a non-zero element in A, it is well known that
I − tA is invertible in A for every t in R with |t| < (‖A‖)−1,
and we have that

(I − tA)−1 =

∞∑
n=0

(tA)n =

∞∑
n=0

tnAn. (9)

Since δ is a continuous linear mapping, it is easy to prove
that δ is real linear. Thus δ(tnB) = tnδ(B) for every B in A
and every positive integer n.

By G(I − tA)(I − tA)−1 = G, it follows that

(G− tGA)δ((I − tA)−1) + δ(G− tGA)(I − tA∗)−1 = δ(G). (10)

By (9) we can obtain that

(G− tGA)δ(
∞∑

n=0

tnAn) + δ(G− tGA)
∞∑

n=0

tn(A∗)n = δ(G). (11)

Since δ is a continuous linear mapping, we have that

δ(G) =

∞∑
n=0

tnGδ(An)−
∞∑

n=0

tn+1GAδ(An) +

∞∑
n=0

tnδ(G)(A∗)n −
∞∑

n=0

tn+1δ(GA)(A∗)n

=

∞∑
n=1

tn[Gδ(An)−GAδ(An−1) + δ(G)(A∗)n − δ(GA)(A∗)n−1] +Gδ(I) + δ(G). (12)
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By δ(I) = 0, it implies that

∞∑
n=1

tn[Gδ(An)−GAδ(An−1) + δ(G)(A∗)n − δ(GA)(A∗)n−1] = 0 (13)

for every t in R with |t| < (‖A‖)−1. Consequently,

Gδ(An)−GAδ(An−1) + δ(G)(A∗)n − δ(GA)(A∗)n−1 = 0 (14)

for all n = 1, 2, · · · . In particular, choose n = 1 and n = 2
in (14), respectively, we have the following two identities:

Gδ(A)−GAδ(I) + δ(G)A∗ − δ(GA) = 0 (15)

and

Gδ(A2)−GAδ(A) + δ(G)(A∗)2 − δ(GA)A∗ = 0. (16)

Multiplying A∗ from the right side of (15) and by δ(I) = 0,
we obtain

Gδ(A)A∗ + δ(G)(A∗)2 − δ(GA)A∗ = 0. (17)

Comparing (16) and (17), we have that

Gδ(A2) = GAδ(A) +Gδ(A)A∗. (18)

By the definition of the left separating point, we know that

δ(A2) = Aδ(A) + δ(A)A∗ (19)

for every A in A. Thus δ is a Jordan ∗-derivation.
We note that ifA is a complex unital Banach ∗-algebra and δ

is a linear Jordan ∗-derivation fromA into its Banach bimodule
M, then δ is equal to zero. In fact, if

δ(AB +BA) = Aδ(B) + δ(B)A∗ +Bδ(A) + δ(A)B∗ (20)

for each A,B in A, then by δ(I) = 0, we have that

δ(A(iI) + (iI)A) = (iI)δ(A) + δ(A)(−iI). (21)

Hence δ(A) = 0 for every A in A. Thus by Theorems 2.1
and 2.2, we have the following two corollaries.

Corollary 2.1. Suppose that A is a complex unital C∗-
algebra andM is a unital Banach A-bimodule. If δ is a linear
mapping (non-necessarily continuous) from A into M that

satisfies the condition

AB = I ⇒ Aδ(B) + δ(A)B∗ = δ(I), (22)

then δ is equal to zero.

Corollary 2.2. Suppose that A is a complex unital C∗-
algebra, M is a unital Banach A-bimodule and G is a left
separating point of M. If δ is a continuous linear mapping
from A intoM that satisfies the condition

AB = G⇒ Aδ(B) + δ(A)B∗ = δ(G), (23)

then δ is equal to zero.

For complex von Neumann algebras, we have the following
result.

Theorem 2.3. Suppose that A is a complex factor von
Neumann algebra, M is a unital Banach A-bimodule and G
is a left separating point of M. If δ is a linear mapping
(non-necessarily continuous) from A intoM that satisfies the
condition

AB = G⇒ Aδ(B) + δ(A)B∗ = δ(G), (24)

then δ is equal zero.

Proof. Since GI = G, it follows that

Gδ(I) + δ(G) = δ(G). (25)

By the definition of the left separating point, we know that
δ(I) = 0.

For every projection P in A and t in R with t 6= 1, it is easy
to show that

G(I − tP )(I − t

t− 1
P ) = G. (26)

It follows taht
(G− tGP )δ(I − t

t− 1
P ) + δ(G− tGP )(I − t

t− 1
P ) = δ(G). (27)

Multiplying (t− 1) from the left and right sides of (27), we have that

(G− tGP )δ((t− 1)I − tP ) + δ(G− tGP )((t− 1)I − tP ) = (t− 1)δ(G). (28)

Hence, for any t 6= 0, 1, we can obtain that

t(GPδ(P )− δ(GP ) + δ(GP )P ) + (δ(GP )−Gδ(P )− δ(G)P ) = 0. (29)
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Hence

δ(GP ) = Gδ(P ) + δ(G)P = Gδ(P ) + δ(G)P ∗. (30)

SinceA is a complex factor von Neumann algebra and by [4,
Theorem 3], we know that every element in A can be written
as a complex linear combination of projections in A. Thus we
have that

δ(GA) = Gδ(A) + δ(G)A∗ (31)

for every A in A.
Let A be an invertible element in A. By GAA−1 = G, we

can obtain that

GAδ(A−1) + δ(GA)(A∗)−1 = δ(G). (32)

By (31) and (32), it implies that

Aδ(A−1) + δ(A)(A∗)−1 = 0. (33)

For any T in A, let n be a positive integer with n > ‖T‖+1 and B = nI + T . We have that B and I −B are invertible in A.
By (33), we know that

δ(B) =−Bδ(B−1)B∗ = −Bδ(B−1(I −B)2 −B)B∗

=−Bδ(B−1(I −B)2)B∗ +Bδ(B)B∗

=(I −B)2δ((I −B)−2B)(I −B∗)2 +Bδ(B)B∗

=(I −B)2δ((I −B)−2 − (I −B)−1)(I −B∗)2 +Bδ(B)B∗

=(I −B)2δ((I −B)−2)(I −B∗)2 − (I −B)2δ((I −B)−1)(I −B∗)2 +Bδ(B)B∗

=− δ((I −B)2) + (I −B)δ(I −B)(I −B∗) +Bδ(B)B∗

=− δ(B2) +Bδ(B) + δ(B)B∗ + δ(B). (34)

It implies that δ(B2) = Bδ(B) + δ(B)B∗ for every B in
A, by δ(I) = 0, we have that

δ(T 2) = Tδ(T ) + δ(T )T ∗ (35)

for every T in A. By the discussion preceding Corollary 2.1,
we know that δ is equal to zero.

3. Conclusion

Suppose thatA is a real or complex unital Banach ∗-algebra
andM is a unital Banach A-bimodule. An element G in A is
called a left separating point ofM ifGM = 0 impliesM = 0
for every M in M. It is easy to see that every left invertible
element in A is a left separating point ofM.

In Section 2, we let G be in A that is a left separating point
ofM, and characterize the additive mapping δ fromA intoM
satisfies the following condition

A,B ∈ A, AB = G⇒ Aδ(B) + δ(A)B∗ = δ(G). (36)

Initially, we prove that if A is a real unital C∗-algebra and
G = I is the identity inA, then δ (non-necessarily continuous)
is a Jordan ∗-derivation. In addition, we prove that if A is a
real unital C∗-algebra and δ is continuous linear, then δ is a
Jordan ∗-derivation. Finally, we show that if A is a complex
factor von Neumann algebra and δ is a linear mapping, then δ
(non-necessarily continuous) is equal to zero.
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